Package: epiomics (via r-universe)

October 13, 2024

Title Analysis of Omics Data in Observational Studies

Version 1.1.0

Description A collection of fast and flexible functions for analyzing omics data in observational studies. Multiple different approaches for integrating multiple environmental/genetic factors, omics data, and/or phenotype data are implemented. This includes functions for performing omics wide association studies with one or more variables of interest as the exposure or outcome; a function for performing a meet in the middle analysis for linking exposures, omics, and outcomes (as described by Chadeau-Hyam et al., (2010) <doi:10.3109/1354750X.2010.533285>); and a function for performing a mixtures analysis across all omics features using quantile-based g-Computation (as described by Keil et al., (2019) <doi:10.1289/EHP5838>).

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports data.table, ggplot2, ggrepel, qgcomp, stats, survival

Suggests covr, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://goodrich-lab.r-universe.dev

RemoteUrl https://github.com/goodrich-lab/epiomics

RemoteRef HEAD

RemoteSha be15123a56466d83252c658224048b3b7861c2ea

Contents

Index		12
	volcano_owas	10
	owas_qgcomp	
	owas_clogit	
	owas	
	meet_in_middle	
	example_data	
	coef_plot_from_owas	

coef_plot_from_owas

Create volcano plot using results from owas

Description

Creates a coefficient plot based on ggplot using the results from the owas function.

Usage

```
coef_plot_from_owas(
   df,
   main_cat_var = NULL,
   order_effects = TRUE,
   highlight_adj_p = TRUE,
   highlight_adj_p_threshold = 0.05,
   effect_ratio = FALSE,
   flip_axis = FALSE,
   filter_p_less_than = 1
)
```

Arguments

df

output from owas function call, using conf_int = TRUE.

main_cat_var

Which variable should be the primary categorical variable? Should be either var_name or feature_name. Only relevant if both var_name and feature_name have more than one level. Default is NULL, and the y-axis is chosen as the variable that has more levels.

order_effects

Should features be ordered by the mean effect estimate? Default is TRUE.

highlight_adj_p

Should features which meet a specific adjusted p-value threshold be highlighted? Default is TRUE.

highlight_adj_p_threshold

If highlight_adj_p = TRUE, can set annotation_adj_p_threshold to change the adjusted p-value threshold for which features will be highlighted. Defaults to 0.05.

example_data 3

effect_ratio Are the effect estimates on the ratio scale (ie, should the null effect line be centered at 1)? Defaults to FALSE.

flip_axis Flip the x and y axis? Default is FALSE, and the y-axis is plotted with the

Flip the x and y axis? Default is FALSE, and the y-axis is plotted with the features or variable names.

filter_p_less_than

P-value threshold for which features/variables will be included in the plot. Default is 1, and all features will be included.

Value

A ggplot figure

Examples

example_data

Example data with multiple exposures, multiple outcomes,

Description

Example data with multiple exposures, multiple outcomes,

Usage

```
data(example_data)
```

Format

An dataframe with multiple exposures, outcomes, and omics features.

4 meet_in_middle

Examples

```
data(example_data)
```

meet_in_middle

Perform 'omics wide association study

Description

Implements a meet in the middle analysis for identifying omics associated with both exposures and outcomes, as described by Chadeau-Hyam et al., 2010.

Usage

```
meet_in_middle(
    df,
    exposure,
    outcome,
    omics,
    covars = NULL,
    outcome_family = "gaussian",
    confidence_level = 0.95,
    conf_int = FALSE,
    ref_group_exposure = NULL,
    ref_group_outcome = NULL
)
```

Arguments

£
frame
ı

exposure Name of the exposure of interest. Can be either continuous or dichotomous.

Currently, only a single exposure is supported.

outcome Name of the outcome of interest. Can be either continuous or dichotomous. For

dichotomous variables, must set $outcome_family$ to "logistic", and values must be either 0/1 or a factor with the first level representing the reference group.

Currently, only a single outcome is supported.

omics Names of all omics features in the dataset

covars Names of covariates (can be NULL)

outcome_family "gaussian" for linear models (via lm) or "binomial" for logistic (via glm) confidence_level

Confidence level for marginal significance (defaults to 0.95)

conf_int Should Confidence intervals be generated for the estimates? Default is FALSE.

Setting to TRUE will take longer. For logistic models, calculates Wald confi-

dence intervals via confint.default.

meet_in_middle 5

```
ref_group_exposure
```

Reference category if the exposure is a character or factor. If not, can leave empty.

ref_group_outcome

Reference category if the outcome is a character or factor. If not, can leave empty.

Value

A list of three dataframes, containing:

- 1. Results from the Exposure-Omics Wide Association Study
- 2. Results from the Omics-Outcome Wide Association Study
- 3. Overlapping significant features from 1 and 2. For each omics wide association, results are provided in a data frame with 6 columns: feature_name: name of the omics feature estimate: the model estimate for the feature. For linear models, this is the beta: for logistic models, this is the log odds. se: Standard error of the estimate p_value: p-value for the estimate adjusted_pval: FDR adjusted p-value threshold: Marginal significance, based on unadjusted p-values

Examples

```
# Load Example Data
data("example_data")
# Get names of omics
colnames_omic_fts <- colnames(example_data)[grep("feature_",</pre>
                                               colnames(example_data))][1:10]
# Meet in the middle with a dichotomous outcome
res <- meet_in_middle(df = example_data,
                      exposure = "exposure1",
                      outcome = "disease1",
                      omics = colnames_omic_fts,
                      covars = c("age", "sex"),
                      outcome_family = "binomial")
# Meet in the middle with a continuous outcome
res <- meet_in_middle(df = example_data,
                      exposure = "exposure1",
                      outcome = "weight",
                      omics = colnames_omic_fts,
                      covars = c("age", "sex"),
                      outcome_family = "gaussian")
# Meet in the middle with a continuous outcome and no covariates
res <- meet_in_middle(df = example_data,</pre>
                      exposure = "exposure1",
                      outcome = "weight",
                      omics = colnames_omic_fts,
                      outcome_family = "gaussian")
```

6 owas

owas

Perform 'omics wide association study

Description

Implements an omics wide association study with the option of using the 'omics data as either the dependent variable (i.e., for performing an exposure -> 'omics analysis) or using the 'omics as the independent variable (i.e., for performing an 'omics -> outcome analysis). Allows for either continuous or dichotomous outcomes, and provides the option to adjust for covariates.

Usage

```
owas(
   df,
   var,
   omics,
   covars = NULL,
   var_exposure_or_outcome,
   family = "gaussian",
   confidence_level = 0.95,
   conf_int = FALSE,
   ref_group = NULL
)
```

Arguments

df	Dataset			
var	Name of the variable or variables of interest- this is usually either an exposure variable or an outcome variable. Can be either continuous or dichotomous. For dichotomous variables, must set family to "binomial", and values must be either 0/1 or a factor with the first level representing the reference group. Can handle multiple variables, but they must all be of the same family.			
omics	Names of all omics features in the dataset			
covars	Names of covariates (can be NULL)			
var_exposure_or_outcome				
	Is the variable of interest an exposure (independent variable) or outcome (dependent variable)? Must be either "exposure" or "outcome"			
family	"gaussian" (default) for linear models (via lm) or "binomial" for logistic (via glm)			
confidence_level				
	Confidence level for marginal significance (defaults to 0.95, or an alpha of 0.05)			
conf_int	Should Confidence intervals be generated for the estimates? Default is FALSE. Setting to TRUE will take longer. For logistic models, calculates Wald confidence intervals via confint.default.			
ref_group	Reference category if the variable of interest is a character or factor. If not, can leave empty.			

owas_clogit 7

Value

A data frame with 6 columns: feature_name: name of the omics feature estimate: the model estimate for the feature. For linear models, this is the beta; for logistic models, this is the log odds. se: Standard error of the estimate test_statistic: t-value p_value: p-value for the estimate adjusted_pval: FDR adjusted p-value threshold: Marginal significance, based on unadjusted p-values

Examples

```
# Load Example Data
data("example_data")
# Get names of omics
colnames_omic_fts <- colnames(example_data)[grep("feature_",</pre>
                                               colnames(example_data))][1:10]
# Get names of exposures
expnms = c("exposure1", "exposure2", "exposure3")
# Run function with one continuous exposure as the variable of interest
owas(df = example_data,
    var = "exposure1",
    omics = colnames_omic_fts,
    covars = c("age", "sex"),
     var_exposure_or_outcome = "exposure",
     family = "gaussian")
# Run function with multiple continuous exposures as the variable of interest
owas(df = example_data,
    var = expnms,
     omics = colnames_omic_fts,
     covars = c("age", "sex"),
     var_exposure_or_outcome = "exposure",
     family = "gaussian")
# Run function with dichotomous outcome as the variable of interest
owas(df = example_data,
     var = "disease1",
     omics = colnames_omic_fts,
     covars = c("age", "sex"),
     var_exposure_or_outcome = "outcome",
     family = "binomial")
```

8 owas_clogit

Description

Implements an omics wide association study for matched case control studies using conditional logistic regression. For this function, the variable of of interest should be a dichotomous outcome, and the strata is the variable indicating the matching.

Usage

```
owas_clogit(
  df,
  cc_status,
  cc_set,
  omics,
  covars = NULL,
  confidence_level = 0.95,
  conf_int = FALSE,
  method = "efron"
)
```

Arguments

df	Dataset			
cc_status	Name of the variable indicating case control status. Must be either 0/1 or a factor with the first level representing the reference group.			
cc_set	Name of the variable indicating the case control set.			
omics	Names of all omics features in the dataset reference group.			
covars	Names of covariates (can be NULL)			
confidence_level				
	Confidence level for marginal significance (defaults to 0.95, or an alpha of 0.05)			
conf_int	Should Confidence intervals be generated for the estimates? Default is FALSE. Setting to TRUE will take longer. For logistic models, calculates Wald confidence intervals via confint.default.			
method	method used the correct (exact) calculation in the conditional likelihood or one of the approximations. Default is "efron". Passed to clogit.			

Value

A data frame with 6 columns: feature_name: name of the omics feature estimate: the model estimate for the feature. For linear models, this is the beta; for logistic models, this is the log odds. se: Standard error of the estimate test statistic: t-value p_value: p-value for the estimate adjusted_pval: FDR adjusted p-value threshold: Marginal significance, based on unadjusted p-values

owas_qgcomp 9

owas_qgcomp

Perform omics wide association study using agcomp

Description

Omics wide association study using quantile-based g-Computation (as described by Keil et al., (2019) doi:10.1289/EHP5838) to examine associations of exposure mixtures with each individual 'omics feature as an outcome 'omics data as either the dependent variable. Allows for either continuous or dichotomous outcomes, and provides the option to adjust for covariates.

Usage

```
owas_qgcomp(
  df,
  expnms,
  omics,
  covars = NULL,
  q = 4,
  confidence_level = 0.95,
  family = "gaussian",
  rr = TRUE,
  run.qgcomp.boot = TRUE
)
```

Arguments

df	Dataset

expnms Name of the exposures. Can be either continuous or dichotomous. For dichoto-

mous variables, must set q to "NULL", and values must be either 0/1.

omics Names of all omics features in the dataset

covars Names of covariates (can be NULL)

q NULL or number of quantiles used to create quantile indicator variables rep-

resenting the exposure variables. Defaults to 4If NULL, then qgcomp proceeds with un-transformed version of exposures in the input datasets (useful if data are

already transformed, or for performing standard g-computation).

confidence_level

Confidence level for marginal significance (defaults to 0.95, or an alpha of 0.05)

family Currently only "gaussian" (default) for linear models (via lm) or "binomial" for

logistic. Default is "gaussian".

rr see qgcomp()

run.qgcomp.boot

Should the model be fit with qgcomp.boot? See package qgcomp.boot for details. Default is TRUE. Setting to FALSE decreases computational time.

10 volcano_owas

Value

A data frame with the following columns: feature: name of the omics feature psi: the model estimate for the feature. For linear models, this is the beta; for logistic models, this is the log odds. lcl_psi: the lower confidence interval. ucl_psi: the upper confidence interval. p_value: p-value for the estimate test_statistic: t-statistic for psi coefficient adjusted_pval: FDR adjusted p-value threshold: Marginal significance, based on unadjusted p-values covariates: the names of covariates in the model, if any coef_exposure: the individual coefficient of each exposure

Examples

```
# Load Example Data
data("example_data")
# Get names of omics
colnames_omic_fts <- colnames(example_data)[grep("feature_",</pre>
                                               colnames(example_data))][1:5]
# Names of exposures in mixture
exposure_names = c("exposure1", "exposure2", "exposure3")
# Run function without covariates
out <- owas_ggcomp(df = example_data,
                   expnms = exposure_names,
                   omics = colnames_omic_fts,
                   q = 4,
                   confidence_level = 0.95)
# Run analysis with covariates
out <- owas_qgcomp(df = example_data,</pre>
                   expnms = c("exposure1", "exposure2", "exposure3"),
                   covars = c("weight", "age", "sex"),
                   omics = colnames_omic_fts,
                   q = 4,
                   confidence_level = 0.95)
```

volcano_owas

Create volcano plot using results from owas

Description

Creates a volcano plot based on ggplot using the results from the owas function.

Usage

```
volcano_owas(
  df,
  annotate_ftrs = TRUE,
```

volcano_owas 11

```
annotation_p_threshold = 0.05,
highlight_adj_p = TRUE,
highlight_adj_p_threshold = 0.05,
horizontal_line_p_value = 0.05
)
```

Arguments

df output from owas function call

annotate_ftrs Should features be annotated with the feature name? Default is TRUE. If necessary can change the p_value_threshold as well.

annotation_p_threshold

If annotate_ftrs = TRUE, can set annotation_p_threshold to change the p-value threshold for which features will be annotated. Defaults to 0.05.

highlight_adj_p

Should features which meet a specific adjusted p-value threshold be highlighted? Default is TRUE.

highlight_adj_p_threshold

If highlight_adj_p = TRUE, can set annotation_adj_p_threshold to change the adjusted p-value threshold for which features will be highlighted. Defaults to 0.05.

horizontal_line_p_value

Set the p-value for the horizontal line for the threshold of significance.

Value

A ggplot figure

Examples

Index

```
* datasets
        example_data, 3

coef_plot_from_owas, 2

example_data, 3

meet_in_middle, 4

owas, 6
 owas_clogit, 7
 owas_qgcomp, 9

qgcomp.boot, 9

volcano_owas, 10
```